
Distributed Transactions

Nicolas Évrard

B2CK

Nicolas Évrard (B2CK) Distributed Transactions 1 / 22

What are (distributed) transactions?

Outline

1 What are (distributed) transactions?

2 The issue with distributed transactions

3 A protocol for distributed computation

4 Writing a data manager

Nicolas Évrard (B2CK) Distributed Transactions 2 / 22

What are (distributed) transactions?

Database transactions

Definition
A transaction symbolizes a unit of work performed within a database management
system (or similar system) against a database, and treated in a coherent and
reliable way independent of other transactions.

Similar systems could be, if managed properly:
File systems
git / mercurial
Sending e-mails

Nicolas Évrard (B2CK) Distributed Transactions 3 / 22

What are (distributed) transactions?

Transaction properties

The ACID properties:
Atomicity Transactions are all or nothing ; if one part of the transaction fails,

the entire transaction fails.
Consistency Transactions bring database from one valid state to another

Isolation determines how transactions see other transactions changes
Durability ensures that once a transaction has been committed it will remain

so.

Nicolas Évrard (B2CK) Distributed Transactions 4 / 22

What are (distributed) transactions?

Transaction properties

The ACID properties:
Atomicity Transactions are all or nothing ; if one part of the transaction fails,

the entire transaction fails.
Consistency Transactions bring database from one valid state to another

Isolation determines how transactions see other transactions changes
Durability ensures that once a transaction has been committed it will remain

so.

Nicolas Évrard (B2CK) Distributed Transactions 4 / 22

What are (distributed) transactions?

Transaction properties

The ACID properties:
Atomicity Transactions are all or nothing ; if one part of the transaction fails,

the entire transaction fails.
Consistency Transactions bring database from one valid state to another

Isolation determines how transactions see other transactions changes
Durability ensures that once a transaction has been committed it will remain

so.

Nicolas Évrard (B2CK) Distributed Transactions 4 / 22

What are (distributed) transactions?

Transaction properties

The ACID properties:
Atomicity Transactions are all or nothing ; if one part of the transaction fails,

the entire transaction fails.
Consistency Transactions bring database from one valid state to another

Isolation determines how transactions see other transactions changes
Durability ensures that once a transaction has been committed it will remain

so.

Nicolas Évrard (B2CK) Distributed Transactions 4 / 22

What are (distributed) transactions?

Transaction properties

The ACID properties:
Atomicity Transactions are all or nothing ; if one part of the transaction fails,

the entire transaction fails.
Consistency Transactions bring database from one valid state to another

Isolation determines how transactions see other transactions changes
Durability ensures that once a transaction has been committed it will remain

so.

Nicolas Évrard (B2CK) Distributed Transactions 4 / 22

The issue with distributed transactions

Outline

1 What are (distributed) transactions?

2 The issue with distributed transactions

3 A protocol for distributed computation

4 Writing a data manager

Nicolas Évrard (B2CK) Distributed Transactions 5 / 22

The issue with distributed transactions

Sending emails

Example

The example does the following:
Receive an e-mail
Store in database the e-mail
Send the email to a list of contact

Into a DB transaction
email = receive_email()
if not email.sent:

send(email, contacts)
mark_as_sent(email)
store(email)
Go on within the transaction

Nicolas Évrard (B2CK) Distributed Transactions 6 / 22

The issue with distributed transactions

Sending emails

Example

The example does the following:
Receive an e-mail
Store in database the e-mail
Send the email to a list of contact

Into a DB transaction
email = receive_email()
if not email.sent:

send(email, contacts)
mark_as_sent(email)
store(email)
Go on within the transaction

Nicolas Évrard (B2CK) Distributed Transactions 6 / 22

The issue with distributed transactions

What could possibly go wrong?

Nicolas Évrard (B2CK) Distributed Transactions 7 / 22

A protocol for distributed computation

Outline

1 What are (distributed) transactions?

2 The issue with distributed transactions

3 A protocol for distributed computation

4 Writing a data manager

Nicolas Évrard (B2CK) Distributed Transactions 8 / 22

A protocol for distributed computation

The Two-Phase Commit Protocol

Enters the The Two-Phase commit protocol or 2PC.

Their are two kind of actors in the protocol.
Coordinator The coordinator is the node designated as so, he is the one

controlling the transaction. It is the node initiating the protocol.
Cohorts The other nodes are the cohorts, they will respond with an

agreement message or an abort message.

Nicolas Évrard (B2CK) Distributed Transactions 9 / 22

A protocol for distributed computation

The Voting Phase

When the coordinator reach the last step of its transaction, the Voting Phase starts.

1 The coordinator sends a query to commit message and waits until it has
received a reply

2 The cohorts execute their transaction up to the point where they are asked to
commit

3 Each cohort replies with an agreement message or an abort message.

Nicolas Évrard (B2CK) Distributed Transactions 10 / 22

A protocol for distributed computation

The Voting Phase

When the coordinator reach the last step of its transaction, the Voting Phase starts.

1 The coordinator sends a query to commit message and waits until it has
received a reply

2 The cohorts execute their transaction up to the point where they are asked to
commit

3 Each cohort replies with an agreement message or an abort message.

Nicolas Évrard (B2CK) Distributed Transactions 10 / 22

A protocol for distributed computation

The Voting Phase

When the coordinator reach the last step of its transaction, the Voting Phase starts.

1 The coordinator sends a query to commit message and waits until it has
received a reply

2 The cohorts execute their transaction up to the point where they are asked to
commit

3 Each cohort replies with an agreement message or an abort message.

Nicolas Évrard (B2CK) Distributed Transactions 10 / 22

A protocol for distributed computation

The Voting Phase

When the coordinator reach the last step of its transaction, the Voting Phase starts.

1 The coordinator sends a query to commit message and waits until it has
received a reply

2 The cohorts execute their transaction up to the point where they are asked to
commit

3 Each cohort replies with an agreement message or an abort message.

Nicolas Évrard (B2CK) Distributed Transactions 10 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Completion Phase

If the coordinator received an agreement message from all cohorts
1 The coordinator sends a commit message to all cohorts
2 Each cohorts completes the operation
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator completes the transaction

If the coordinator received an abort message from any cohort
1 The coordinator sends a rollback to all cohorts
2 Each cohort rollbacks its transaction
3 Each cohort sends an acknowledgment to the coordinator
4 The coordinator rollbacks its transaction

Nicolas Évrard (B2CK) Distributed Transactions 11 / 22

A protocol for distributed computation

The Tryton implementation

The Tryton implemation of 2PC is heavily inspired by the one used by the Zope
framework.

The main ideas:
The Tryton transaction is the coordinator
Data managers will join the Tryton transaction
Upon committing the Tryton transaction the 2PC happens
A data manager must raise an error to send an abort message

Nicolas Évrard (B2CK) Distributed Transactions 12 / 22

A protocol for distributed computation

Data manager API

tpc_begin The 2PC is initiated, the data manager should perform any
necessary steps for saving the data

commit In this step the data manager must make sure that any conflicts or
errors are handled. Changes are not permanent yet!

tpc_vote This is the last chance for the data manager to abort the global
transaction. Voting is done by raising (or not) an exception.

tpc_finish This method makes the changes permanent and should never fail.
tpc_abort This method abandons all changes done, just like tpc_finish it

should never fail.

Nicolas Évrard (B2CK) Distributed Transactions 13 / 22

A protocol for distributed computation

Data manager API

tpc_begin The 2PC is initiated, the data manager should perform any
necessary steps for saving the data

commit In this step the data manager must make sure that any conflicts or
errors are handled. Changes are not permanent yet!

tpc_vote This is the last chance for the data manager to abort the global
transaction. Voting is done by raising (or not) an exception.

tpc_finish This method makes the changes permanent and should never fail.
tpc_abort This method abandons all changes done, just like tpc_finish it

should never fail.

Nicolas Évrard (B2CK) Distributed Transactions 13 / 22

A protocol for distributed computation

Data manager API

tpc_begin The 2PC is initiated, the data manager should perform any
necessary steps for saving the data

commit In this step the data manager must make sure that any conflicts or
errors are handled. Changes are not permanent yet!

tpc_vote This is the last chance for the data manager to abort the global
transaction. Voting is done by raising (or not) an exception.

tpc_finish This method makes the changes permanent and should never fail.
tpc_abort This method abandons all changes done, just like tpc_finish it

should never fail.

Nicolas Évrard (B2CK) Distributed Transactions 13 / 22

A protocol for distributed computation

Data manager API

tpc_begin The 2PC is initiated, the data manager should perform any
necessary steps for saving the data

commit In this step the data manager must make sure that any conflicts or
errors are handled. Changes are not permanent yet!

tpc_vote This is the last chance for the data manager to abort the global
transaction. Voting is done by raising (or not) an exception.

tpc_finish This method makes the changes permanent and should never fail.
tpc_abort This method abandons all changes done, just like tpc_finish it

should never fail.

Nicolas Évrard (B2CK) Distributed Transactions 13 / 22

A protocol for distributed computation

Data manager API

tpc_begin The 2PC is initiated, the data manager should perform any
necessary steps for saving the data

commit In this step the data manager must make sure that any conflicts or
errors are handled. Changes are not permanent yet!

tpc_vote This is the last chance for the data manager to abort the global
transaction. Voting is done by raising (or not) an exception.

tpc_finish This method makes the changes permanent and should never fail.
tpc_abort This method abandons all changes done, just like tpc_finish it

should never fail.

Nicolas Évrard (B2CK) Distributed Transactions 13 / 22

A protocol for distributed computation

The python code
On only one slide!

def commit(self):
try:

if self._datamanagers:
for datamanager in self._datamanagers:

datamanager.tpc_begin(self)
for datamanager in self._datamanagers:

datamanager.commit(self)
for datamanager in self._datamanagers:

datamanager.tpc_vote(self)
self.connection.commit()

except:
self.rollback()
raise

else:
try:

for datamanager in self._datamanagers:
datamanager.tpc_finish(self)

except:
logger.critical('A datamanager raised an exception in'

' tpc_finish, the data might be inconsistant',
exc_info=True)

def rollback(self):
for datamanager in self._datamanagers:

datamanager.tpc_abort(self)
self.connection.rollback()

Nicolas Évrard (B2CK) Distributed Transactions 14 / 22

Writing a data manager

Outline

1 What are (distributed) transactions?

2 The issue with distributed transactions

3 A protocol for distributed computation

4 Writing a data manager

Nicolas Évrard (B2CK) Distributed Transactions 15 / 22

Writing a data manager

A data manager for emails

It’s a usual requirement for ERP actions that they should send confirmation
emails.

Tryton provides an helper function to do it correctly: sendmail_transactional.

You just need to specify the following section in your configuration file:
[email]
uri = smtp://user:password@host:port

Nicolas Évrard (B2CK) Distributed Transactions 16 / 22

Writing a data manager

sendmail_transactional

def sendmail_transactional(
from_addr, to_addrs, msg, transaction=None,
datamanager=None):

if transaction is None:
transaction = Transaction()

assert isinstance(transaction, Transaction), transaction
if datamanager is None:

datamanager = SMTPDataManager()
datamanager = transaction.join(datamanager)
datamanager.put(from_addr, to_addrs, msg)

Nicolas Évrard (B2CK) Distributed Transactions 17 / 22

Writing a data manager

SMTPDataManager

class SMTPDataManager(object):

def __init__(self, uri=None):
self.uri = uri
self.queue = []
self._server = None

def put(self, from_addr, to_addrs, msg):
assert isinstance(msg, Message), msg
self.queue.append((from_addr, to_addrs, msg))

def __eq__(self, other):
if not isinstance(other, SMTPDataManager):

return NotImplemented
return self.uri == other.uri

def _finish(self):
self._server = None
self.queue = []

Nicolas Évrard (B2CK) Distributed Transactions 18 / 22

Writing a data manager

tpc_begin / commit

Basically there is nothing special to do.

def tpc_begin(self, trans):
pass

def commit(self, trans):
pass

More complicated data manager might want to prepare to save the data.

Nicolas Évrard (B2CK) Distributed Transactions 19 / 22

Writing a data manager

tpc_begin / commit

Basically there is nothing special to do.

def tpc_begin(self, trans):
pass

def commit(self, trans):
pass

More complicated data manager might want to prepare to save the data.

Nicolas Évrard (B2CK) Distributed Transactions 19 / 22

Writing a data manager

tcp_vote

def tpc_vote(self, trans):
if self._server is None:

self._server = get_smtp_server(self.uri)

The idea here is that if we successfully connect to the server then everything
should be OK.

get_smtp_server is the function parsing the URI to connect to the server. It
uses the smtplib module, so you can use plain SMTP, SMTPS or SMTP+TLS.

Nicolas Évrard (B2CK) Distributed Transactions 20 / 22

Writing a data manager

tcp_finish

def tpc_finish(self, trans):
if self._server is not None:

for from_addr, to_addrs, msg in self.queue:
sendmail(from_addr, to_addrs, msg, server=self._server)

self._server.quit()
self._finish()

This is the function that actually sends the email messages in the queue to the
server.
Once the message are sent the connection is closed and the queue emptied.

Nicolas Évrard (B2CK) Distributed Transactions 21 / 22

Writing a data manager

tcp_abort

def tpc_abort(self, trans):
if self._server:

self._server.close()
self._finish()

This close the connection to the server (quite abruptly) and then tidy up the
queue and server.

Nicolas Évrard (B2CK) Distributed Transactions 22 / 22

	What are (distributed) transactions?
	The issue with distributed transactions
	A protocol for distributed computation
	Writing a data manager

